Targeting the TGF-β1 Pathway to Prevent Normal Tissue Injury After Cancer Therapy
نویسنده
چکیده
With >10,000,000 cancer survivors in the U.S. alone, the late effects of cancer treatment are a significant public health issue. Over the past 15 years, much work has been done that has led to an improvement in our understanding of the molecular mechanisms underlying the development of normal tissue injury after cancer therapy. In many cases, these injuries are characterized at the histologic level by loss of parenchymal cells, excessive fibrosis, and tissue atrophy. Among the many cytokines involved in this process, transforming growth factor (TGF)-beta1 is thought to play a pivotal role. TGF-beta1 has a multitude of functions, including both promoting the formation and inhibiting the breakdown of connective tissue. It also inhibits epithelial cell proliferation. TGF-beta1 is overexpressed at sites of injury after radiation and chemotherapy. Thus, TGF-beta1 represents a logical target for molecular therapies designed to prevent or reduce normal tissue injury after cancer therapy. Herein, the evidence supporting the critical role of TGF-beta1 in the development of normal tissue injury after cancer therapy is reviewed and the results of recent research aimed at preventing normal tissue injury by targeting the TGF-beta1 pathway are presented.
منابع مشابه
Genotype-phenotype association of TGF-β1 and GST with chemo-radiotherapy induced toxicity
Background: Normal tissue toxicity continues to remain as a major challenge for radiation oncologists for delivering the total dose to the tumour cells in cancer patients. Cellular, molecular and plasma based early biomarkers to predict the overreactions and non-overreactions of normal tissue toxicity before the initiation of radiotherapy can be valuable for personalised treatment. The aim of t...
متن کاملStandardized Herbal PM014 Formula Ameliorates Pulmonary Fibrosis in COVID-19 Patients by Inhibiting the TGF-β1 Signaling Pathway
A number of studies have previously provided evidence on the Anti-inflammatory properties of plant-derived compounds that can prevent lung injury. In this study, we attempted to analyze the therapeutic effects of PM 014 on inflammation and pulmonary fibrosis in COVID-19 as well as describing the treatment of one of the most challenging problems related to the coronavirus-19 (COVID-19). We belie...
متن کاملRecombinant fibromodulin has therapeutic effects on diabetic nephropathy by down-regulating transforming growth factor-β1 in streptozotocin-induced diabetic rat model
Objective(s):Diabetic nephropathy is an important long-term complication of diabetes mellitus which appears to be partially mediated by an increase in secretion of transforming growth factor-β (TGF-β). Fibromodulin, the small leucine-rich proteoglycan, has been proposed to be the potent TGFβ1 modulator. In this study, the therapeutic effects of recombinant adenoviral vectors expressing fibromod...
متن کاملTargeting Transforming Growth Factor-Beta1 (TGF-β1) Inhibits Tumorigenesis of Anaplastic Thyroid Carcinoma Cells Through ERK1/2-NF-κB-PUMA Signaling
BACKGROUND The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in promoting tumor growth. TGF-β1was found to be overexpressed in anaplastic thyroid cancer (ATC). We therefore tested our hypothesis that targeting TGF-β1 inhibits tumorigenesis of ATC cells. MATERIAL AND METHODS Effects of TGF-β1 stimulation or TGF-β1 inhibition by small interfering RNA (TGF-β1siRNA...
متن کاملAnti-inflammatory effect of Yu-Ping-Feng-San via TGF-β1 signaling suppression in rat model of COPD
Objective(s): Yu-Ping-Feng-San (YPFS) is a classical traditional Chinese medicine that is widely used for treatment of the diseases in respiratory systems, including chronic obstructive pulmonary disease (COPD) recognized as chronic inflammatory disease. However, the molecular mechanism remains unclear. Here we detected the factors involved in transforming growth factor beta 1 (TGF-β1)/Smad2 si...
متن کامل